
Neural Networks with Adaptive
Activation Functions

Ilaria Castelli
Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy

e-mail: castelli@dii.unisi.it

Tutor: Edmondo Trentin

References
[1] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, USA, 1996.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, New York, 2nd edition, 2001.
[3] G. Cybenko. Approximation by Superposition of Sigmoidal Functions. Mathematics of Control, Signals and Systems, vol 2,
pp. 303-314, 1989.
[4] Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings of the 18 th annual ACM Symposium
on Theory of Computing, 1986.
[5] Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, 2009.

In the most common framework for training neural networks in a supervised
setting, we are given a training set of examples
sampled from an unknown distribution , and we want to minimize the
expected value of a loss function under . Neural networks are usually
trained through a gradient descent procedure [1] to minimize

Introduction

D= {  xk ,yk  :k=1, . .. ,N }
p X,Y 
p X,Y 

Neural activation functions: motivation

According to [3], MLPs with one sigmoidal hidden layer are universal function
approximator, i.e. , , : ∀ h :RpRm ∀ x∈R p ∥f  x,W −h  x ∥<ε∀ ε>0

Although the theorem guarantees the existence of a network able to
approximate any function, from a practical point of view, the number of
nodes required in the hidden layer may grow very large, even exponentially
in the number of inputs [4]. This may lead to big architectures, difficult to
train and prone to stuck into poor local minima.

The idea of this work is to reduce the
training complexity of the networks using a
small number of hidden units, but allowing
them to compute a more flexible activation
function. Our activation functions are
implemented by neural networks and
adaptively learned during training.

Each hidden activation function is trained on a
dataset obtained
propagating the inputs and the outputs from the
external network:

Dh={xhk ,yhk  : k=1, .. . ,N }

f h

where is the u-th entry of input .x [u]
k

xk

xh
k
= ah = ∑

u∈L0

ou∗whu = ∑
u∈L 0

x [u]
k
∗whu

Hidden units training

o i = f i a i  = f i ∑
h=1

m

y h
k∗w ih=y [i]

k

Computing the following condition should be
satisfied for each output unit i:

yh
k

MLP with sigmoidal activation f. MLP with adaptive activation f.
#Param #Hidden ISE test MSE test #Param #Hidden ISE test MSE test

40 13 0.00137 0.037 40 2 (5-6) 9.25e-4 0.035

49 16 0.00390 0.052 37 2 (4-6) 9.42e-4 0.035

46 15 0.00393 0.052 34 2 (4-5) 9.55e-4 0.038

A regression example Ongoing work

Probabilistic pattern weighting

Unit activation a j= ∑
u∈Ll−1

ou∗w ju

Unit output o j=f j a j 

This can be achieved:

through gradient descent

through inversion of the
weight matrix :WOH

OH=WOH
−1 AO

Every hidden unit specializes on a
part of the problem

and , we compute

 , i.e. the probability for

∀ h=1, .. . ,m ∀ xk

P ωh∣xk 
hidden unit h of being competent
on pattern xk

The h-th hidden unit is trained on
Dh to minimize

Ch W h  =
1
2
∑
k=1

N

P ωh∣xk   yhk−f h
k W h 

2

The estimate is used to
weight the contribute of h to the
activation of the i-th output unit:

P ωh∣xk 

a i = ∑
h=1

m

ohwihP ωh∣x k  = ∑
h=1

m

oh wih

 is computed through a maximum
likelihood density estimation joint over the
input pattern projected in hidden spaces
and the target output

p   x k ,y k ∣θ  = ∑
h=1

m

P ωh  p  wh xk ,y k ∣ωh ,θh

P ω∣xk 

(a) (b)

(c) (d)

(a) pattern assigned
to each hidden after
ML estimation

(b) likelihood mixture
components and
associated posterior
weights

(c) weighted training
set for 1st hidden unit

(d) weighted training
set for 2nd hidden unit

Evaluation of this model for classification problems

(e) activation learned for 1st unit (f) activation learned for 2nd unit (g) comparison against classical MLP

Both classical MLPs and
MLPs with adaptive activation
functions, have been trained
using the same hyper-
parameters (i.e. learning rate,
sigmoid smoothness, total
number of training epochs)

Recursive unrolling of hidden units in order to
expand the network in depth

An alternative way of dealing with the difficulties in
training networks that require a large number of
hidden units has been recently proposed [5], and
consists in using “deep architectures”.
I'm currently exploiting such deep models to
understand their disentangling capabilities in difficult
classification problems (i.e. related to face analysis, in
large scale settings with millions of images)

L  f W  , X,Y   =
1
2
∑
k=1

N

 yk−f  xk ;W  
2

Input patterns are forwarded through the
network, up to the output units, computing .f W 

and, since D is given, this reduces in

C W  =
1
2
∑
k=1

N

 yk−f k W  
2

minimizing

w.r.t. the network weights W.

	Pagina 1

