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In the most common framework for training neural networks in a supervised 
setting, we are given a training set                                    of examples 
sampled from an unknown distribution            , and we want to minimize the 
expected value of a loss function under             .  Neural networks are usually 
trained through a gradient descent procedure [1] to minimize 

Introduction

D= {  xk ,yk  :k=1, . .. ,N }
p X,Y 
p X,Y 

Neural activation functions: motivation

According to [3], MLPs with one sigmoidal hidden layer are universal function 
approximator, i.e.           ,                  ,             : ∀ h :RpRm ∀ x∈R p ∥f  x,W −h  x ∥<ε∀ ε>0

Although the theorem guarantees the existence of a network able to 
approximate any function, from a practical point of view, the number of 
nodes required in the hidden layer may grow very large, even exponentially 
in the number of inputs [4]. This may lead to big architectures, difficult to 
train and prone to stuck into poor local minima.

The idea of this work is to reduce the 
training complexity of the networks using a 
small number of hidden units, but allowing 
them to compute a more flexible activation 
function. Our activation functions are 
implemented by neural networks and 
adaptively learned during training.

Each hidden activation function     is trained on a 
dataset                                     obtained 
propagating the inputs and the outputs from the 
external network:

Dh={xhk ,yhk  : k=1, .. . ,N }
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Hidden units training

o i = f i a i  = f i ∑
h=1

m

y h
k∗w ih=y [i ]
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Computing     the following condition should be 
satisfied  for each output unit i:

yh
k

MLP with sigmoidal activation f. MLP with adaptive activation f.
#Param #Hidden ISE test MSE test #Param #Hidden ISE test MSE test

40 13 0.00137 0.037 40 2 (5-6) 9.25e-4 0.035

49 16 0.00390 0.052 37 2 (4-6) 9.42e-4 0.035

46 15 0.00393 0.052 34 2 (4-5) 9.55e-4 0.038

A regression example Ongoing work

Probabilistic pattern weighting

Unit activation a j= ∑
u∈Ll−1

ou∗w ju

Unit output o j=f j a j 

This can be achieved:

through gradient descent

through inversion of the 
weight matrix         :WOH

OH=WOH
−1 AO

Every hidden unit specializes on a 
part of the problem

and        , we compute

             , i.e. the probability for

∀ h=1, .. . ,m ∀ xk

P ωh∣xk 
hidden unit h of being competent 
on pattern xk

The h-th hidden unit is trained on
Dh to minimize 

Ch W h  =
1
2
∑
k=1

N

P ωh∣xk   yhk−f h
k W h 
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The estimate               is used to 
weight the contribute of h to the 
activation of the i-th output unit:

P ωh∣xk 

a i = ∑
h=1

m

ohwihP ωh∣x k  = ∑
h=1

m

oh wih

            is computed through a maximum 
likelihood density estimation joint over the 
input pattern projected in hidden spaces 
and the target output

p   x k ,y k ∣θ  = ∑
h=1

m

P ωh  p  wh xk ,y k ∣ωh ,θh

P ω∣xk 

(a) (b)

(c) (d)

(a) pattern assigned 
to each hidden after
ML estimation

(b) likelihood mixture 
components and 
associated posterior 
weights 

(c) weighted training 
set for 1st hidden unit

(d) weighted training 
set for 2nd hidden unit

Evaluation of this model for classification problems

(e) activation learned for 1st unit (f) activation learned for 2nd unit (g) comparison against classical MLP

Both classical  MLPs and 
MLPs with adaptive activation 
functions, have been trained 
using the same hyper-
parameters (i.e. learning rate, 
sigmoid smoothness, total 
number of training epochs)

Recursive unrolling of hidden units in order to 
expand the network in depth

An alternative way of dealing with the difficulties in 
training networks that require a large number of 
hidden units has been recently proposed [5], and 
consists in using “deep architectures”.
I'm currently exploiting such deep models to 
understand their disentangling capabilities in difficult 
classification problems (i.e. related to face analysis, in 
large scale settings with millions of images)
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Input patterns are forwarded through the 
network, up to the output units, computing        .f W 

and, since D is given, this reduces in

C W  =
1
2
∑
k=1

N

 yk−f k W  
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minimizing

w.r.t. the network weights W.
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