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Introduction Neural activation functions: motivation
In the most common framework for training neural networks in a supervised According to [3], MLPs with one sigmoidal hidden layer are universal function
setting, we are given a training set D=|(x*,y*|:k=1,...,N | of examples approximator, i.e. \/¢>0 , % h:R* - R™ .V xeR? : ||flx,W|—hlx]||<e

sampled from an unknown dis_tribution plX, Y|, and we want to minimize the Although the theorem guarantees the existence of a network able to
expected value of a loss function under p(x,Y| . Neural networks are usually approximate any function, from a practical point of view, the number of

trained through a graNdient descent procedure [1] to minimize nodes required in the hidden layer may grow very large, even exponentially
LIfIW],[X,Y] = %Z Yk F (K ;W))Z and, since D is given, this reduces in | |In the number of inputs [4]. This may lead to big architectures, difficult to
k=1 train and prone to stuck into poor local minima.

minimizing Clw| = %Iﬁl(yk—f"(w))2

w.r.t. the network weights W.

The idea of this work Is to reduce the
training complexity of the networks using a
small number of hidden units, but allowing
them to compute a more flexible activation
function. Our activation functions are

Input patterns are forwarded through the
network, up to the output units, computing f(W/|.

Unit activation a;= )3 0¥ Wy, iImplemented by neural networks and
“hi adaptively learned during training.
Unit output 0;=f;(a;)
Hidden units training Probabilistic pattern weighting
Each hiddsn aC:in‘tiO” function I IS trained on a » Vh=1,...,m and Vx‘, we compute | Pleo|x*| is computed through a maximum
dataset D"=|(x.y}):k=1.....N| obtained Plw, x| | i.e. the probability for likelihood density estimation joint over the

propagating the inputs and the outputs from the
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external network:

and the target output
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» Computing y, the following condition should be ColW,| = = p(w |X’<)(yk_fk(w )) . [ Y | to each hidden after
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This can be achieved: » The estimate P|w,|x"| is used to © | ==t () o | N
- weight the contribute of h to the N e B | {0 weighted fraining
~ through gradient descent gnt . . LR Rtk N IFE I S Y | setfor 1% hidden unit
_ _ activation of the i-th output unit: S S T
- through Inversion Of the m ) m S . “:} : 1 (d) weighted training
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A regression example Ongoing work
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e AN SRS % | N U % ~ An alternative way of dealing with the difficulties in
(e) activation learned for 1%t unit (f) activation learned for 2" unit (g) comparison against classical MLP training networks that require a Iarge number of
hidden units has been recently proposed [5], and
Both classical MLPs and ' ' - T ; Z
L : . : : L : _ g consists in using “deep architectures”.
MLP with sigmoidal activation f. MLP with adaptive activation f.  MLPs with adaptive activation I fl gl iti P hd dels t
#Param #Hidden ISE test MSE test #Param #Hidden ISE test MSE test functions, have been trained m crren y ex_p O! Ing =ue - eep mo_ e > O e
using the same hyper- understand their disentangling capabillities in difficult
40 13 0.00137 0.037 40 2 (5-6) 9.25e-4 0.035  parameters (i.e. learning rate, classification problems (i.e. related to face analysis, in
49 16 0.00390 0.052 37 2 (4-6) 9.42e-4 0.035 sigmoid smoothness, total - : nr :
. . . o N ) number of training epochs) large scale settings with millions of images)
. . (4-5) 9.55e-4 0.038
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